Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
RSC Adv ; 14(12): 8409-8433, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38476178

Yolk-shell microgels and their hybrids have attained great importance in modern-day research owing to their captivating features and potential uses. This manuscript provides the strategies for preparation, classification, properties and current applications of yolk-shell microgels and their hybrids. Some of the yolk-shell microgels and their hybrids are identified as smart polymer yolk-shell microgels and smart hybrid microgels, respectively, as they react to changes in particular environmental stimuli such as pH, temperature and ionic strength of the medium. This unique behavior makes them a perfect candidate for utilization in drug delivery, selective catalysis, adsorption of metal ions, nanoreactors and many other fields. This review demonstrates the contemporary progress along with suggestions and future perspectives for further research in this specific field.

2.
Int J Biol Macromol ; 261(Pt 2): 129962, 2024 Mar.
Article En | MEDLINE | ID: mdl-38316322

In this work, novel monoclinic tungsten oxide (WO3)-encapsulated phosphate-rich porous sodium alginate (PASA) microspherical hydrogel beads were prepared for efficient U(VI) capture. These macroporous and hollow beads were systematically characterized through XRD, FTIR, EDX-mapping, and SEM-EDS techniques. The O and P atoms in the PO and monoclinic WO3 offered inner-spherical complexation with U(VI). The in situ growth of WO3 played a significant role inside the phosphate-rich biopolymeric network to improve its chemical stability, specific surface area, adsorption capacity, and sorption rate. The phytic acid (PA) served for heteroatom doping and crosslinking. The encapsulated WO3 mass ratio was optimized in different composites, and WO3/PASA3 (the microspherical beads with a mass ratio of 30.0 % w/w) exhibited remarkable maximum sorption capacity qm (336.42 mg/g) computed through the best-fit Langmuir model (R2 ≈ 0.99) and rapid sorption equilibrium, teq (150 min). The isothermal sorption studies were conducted at different temperatures (298, 303, and 308 K) and thermodynamic parameters concluded that the process of U(VI) sorption using WO3/PASA3 is endothermic and feasible having ΔHo (8.19 kJ/mol), ΔGo (-20.75, -21.38, and - 21.86 kJ/mol) and proceeds with a minute increase in randomness ΔSo (0.09 kJ/mol.K). Tungsten oxide (WO3)-encapsulated phosphate-rich porous microspherical beads could be promising material for uranium removal.


Alginates , Oxides , Tungsten , Uranium , Alginates/chemistry , Adsorption , Phosphates , Porosity , Thermodynamics , Kinetics , Uranium/chemistry , Hydrogen-Ion Concentration
3.
Int J Biol Macromol ; 260(Pt 1): 129409, 2024 Mar.
Article En | MEDLINE | ID: mdl-38224801

Chitosan based microgels have gained great attention because of their chemical stability, biocompatibility, easy functionalization and potential uses in numerous fields. Production, properties, characterization and applications of chitosan based microgels have been systematically reviewed in this article. Some of these systems exhibit responsive behavior towards external stimuli like pH, light, temperature, glucose, etc. in terms of swelling/deswelling in an aqueous medium depending upon the functionalities present in the network which makes them a potential candidate for various applications in the fields of biomedicine, agriculture, catalysis, sensing and nanotechnology. Current research development and critical overview in this field accompanying by future possibilities is presented. The discussion is concluded with recommended possible future works for further progress in this field.


Chitosan , Microgels , Microgels/chemistry , Chitosan/chemistry , Gels/chemistry , Catalysis , Nanotechnology
4.
Org Lett ; 25(23): 4281-4285, 2023 06 16.
Article En | MEDLINE | ID: mdl-37284829

A highly selective asymmetric synthesis of a potent anti-TB drug (-)-bedaquiline is accomplished using sulfur ylide asymmetric epoxidation, employing (+)-isothiocineole as an inexpensive and readily available chiral sulfide. Excellent enantioselectivity (er 96:4) and diastereoselectivity (dr 90:10) were obtained for the construction of the key diaryl epoxide, which was subsequently subjected to a highly regioselective ring opening (96:4). The synthesis was completed in nine steps starting from commercially available aldehyde in 8% overall yield.


Antitubercular Agents , Sulfur , Molecular Structure , Stereoisomerism
5.
Int J Biol Macromol ; 243: 125327, 2023 Jul 15.
Article En | MEDLINE | ID: mdl-37302624

In this study, an innovative approach is followed to synthesize graft copolymerized chitosan with acetylacetone (AA-g-CS) through free-radical induced grafting. Afterwards, AA-g-CS and rutile have been intercalated uniformly into amino carbamate alginate matrix to prepare its biocomposite hydrogel beads of improved mechanical strength having different mass ratio i.e., 5.0 %, 10.0 % 15.0 % and 20.0 % w/w. Biocomposites have been thoroughly characterized through FTIR, SEM and EDX analysis. Isothermal sorption data showed good fit with Freundlich model as conferred from regression coefficient (R2 ≈ 0.99). Kinetic parameters were evaluated through non-linear (NL) fitting of different kinetic models. Experimental kinetic data exhibited close agreement to quasi-second order kinetic model (R2 ≈ 0.99) which reveals that chelation between heterogeneous grafted ligands and Ni(II) is occurring through complexation. Thermodynamic parameters were evaluated at different temperatures to observe the sorption mechanism. The negative values of ΔG° (-22.94, -23.56, -24.35 and - 24.94 kJ/mol), positive ΔH° (11.87 kJ/mol) and ΔS° (0.12 kJ/molK-1) values indicated that the removal process is spontaneous and endothermic. The maximum monolayer sorption capacity (qm) was figured as 246.41 mg/g at 298 K and pH = 6.0. Hence, 3AA-g-CS/TiO2 could be better candidate for economic recovery of Ni(II) ions from waste effluents.


Chitosan , Water Pollutants, Chemical , Chitosan/chemistry , Alginates/chemistry , Adsorption , Thermodynamics , Kinetics , Water , Hydrogen-Ion Concentration
6.
Int J Biol Macromol ; 240: 124401, 2023 Jun 15.
Article En | MEDLINE | ID: mdl-37044327

Chitosan based monodisperse poly[chitosan-N-isopropylmethacrylamide-acrylic acid] [P(CNA)] microgels were produced via precipitation polymerization. Resulting crosslinked P(CNA) micro particles were used as micro-reactors to prepare silver nanoparticles within the polymeric network by chemical reduction of Ag+ ions with sodium borohydride. Various techniques including transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and ultraviolet-visible (UV-vis) spectroscopy were used to analyze P(CNA) microgels and Ag-P(CNA) hybrid microgels. Catalytic potential of Ag-P(CNA) hybrid system towards individual and simultaneous reduction of various nitroarenes like p-nitrophenol (pNP), o-nitrophenol (oNP), p-nitroaniline (pNA) and o-nitroaniline (oNA) into corresponding aminoarenes using sodium borohydride as a reductant in aqueous medium was evaluated. The catalytic activity of Ag-P(CNA) system towards both the individual and simultaneous reduction of nitroarenes was examined at various concentrations of catalyst. The values of pseudo first order rate constant (k1) for reduction of individual nitroarene and multiple nitroarenes were determined for comparison. The Ag-P(CNA) hybrid microgel system was found to be stable, economical and efficient catalyst for rapid individual and simultaneous reduction of nitroarenes.


Chitosan , Metal Nanoparticles , Microgels , Metal Nanoparticles/chemistry , Chitosan/chemistry , Silver/chemistry , Catalysis
7.
Crit Rev Anal Chem ; : 1-15, 2023 Feb 09.
Article En | MEDLINE | ID: mdl-36757081

Smart microgels have gained much attention because of their wide range of applications in the field of biomedical, environmental, nanotechnological and catalysis sciences. Most of the applications of microgels are strongly affected by their morphology, size and size distribution. Various methodologies have been adopted to obtain polymer microgel particles. Droplet microfluidic techniques have been widely reported for the fabrication of highly monodisperse microgel particles to be used for various applications. Monodisperse microgel particles of required size and morphology can be achieved via droplet microfluidic techniques by simple polymerization of monomers in the presence of suitable crosslinker or by gelation of high molecular weight polymers. This report gives recent research progress in fabrication, characterization, properties and applications of microgel particles synthesized by microfluidic methods.

8.
Environ Technol ; 44(11): 1679-1689, 2023 Apr.
Article En | MEDLINE | ID: mdl-34821537

Poly(styrene-N-isopropylmethacrylamide-methacrylic acid) core-shell [P(SNM)CS] microgel particles were synthesised by seed-mediated emulsion polymerisation method. Silver nanoparticles were loaded into shell of P(SNM)CS microgels by in situ reduction of Ag+ ions. Synthesised core-shell microgels and hybrid core-shell microgels were characterised by using Fourier transformed infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), UV-Visible spectroscopy and Dynamic light scattering (DLS). Stability of Ag nanoparticles within P(SNM)CS system was also investigated over the time using UV-Visible spectroscopy. Catalytic properties of silver nanoparticles loaded microgel system [Ag-P(SNM)CS] were studied by reducing Eosin-Y and Methylene blue with NaBH4 in water. The values of observed rate constant (kobs) were determined under different reaction conditions. The hybrid system was capable to degrade both dyes and may be used for degradation of several other toxic chemicals efficiently.


Metal Nanoparticles , Microgels , Polymers/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , Hydrogels , Catalysis
9.
Int J Biol Macromol ; 209(Pt A): 132-143, 2022 Jun 01.
Article En | MEDLINE | ID: mdl-35390398

The present study is based on the synthesis of a novel hybrid biosorbent using 1,2-cyclohexylenedinitrilotetraacetic acid modified crosslinked chitosan and amino-thiocarbamate moiety functionalized sodium alginate (CDTA-CS/TSC-CA). The fabricated sorbent was employed to investigate the efficient recovery of Cu(II) from aqueous media. CDTA-CS/TSC-CA was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Analysis confirmed the successful modification of both biopolymers and subsequent loading of Cu(II) ions. CDTA-CS/TSC-CA was casted in the form of hydrogel beads having different CDTA-CS to TSC-CA mass ratios i.e., 10.0-40.0% by mass. The hydrogel beads 4CDTA-CS/TSC-CA with CDTA-CS/TSC-CA mass ratio of 40.0% was found most effective for copper sorption. Equilibrium sorption results showed that initial concentration of copper, medium pH, contact time, sorbent dosage and temperature influenced the sorption capacity (qe). Rate of sorption data was interpreted using different kinetic models and found best fitted with pseudo second order rate expression (R2 ≈ 0.99), illustrating that the rate determining step includes the electron density transfer from sorbent coordination sites to central copper ions. Crank's RIDE equation and Elovich chemisorption model (ECM) revealed the presence of two sorption phases, initially rapid sorption followed by comparatively a slow uptake. Equilibrium sorption data was well depicted by Langmuir model and maximum monolayer adsorption capacity (qm) was computed as 276.53 mg·g-1 at 298 K. Standard Gibbs free energy change, ∆G° (-19.99, -20.18 and -20.36 kJ/ mol), standard enthalpy change, ∆H° (-8.95 kJmol) and standard entropy change, ∆S° (0.04 kJ/mol K-1) values suggested that the adsorption process is spontaneous and exothermic. Hence, 4CDTA-CS/TSC-CA was found efficient biosorbent for copper removal from its dilute effluents.


Chitosan , Water Pollutants, Chemical , Adsorption , Alginates/chemistry , Chitosan/chemistry , Copper/chemistry , Hydrogels/chemistry , Hydrogen-Ion Concentration , Ions , Kinetics , Spectroscopy, Fourier Transform Infrared
10.
RSC Adv ; 12(9): 5105-5117, 2022 Feb 10.
Article En | MEDLINE | ID: mdl-35425556

Polymer microgels containing a polystyrene core and poly(N-isopropylmethacrylamide) shell were synthesized in aqueous media following a free radical precipitation polymerization. Au nanoparticles were fabricated into the shell region of the core-shell microgels denoted as P(STY@NIPM) by the in situ reduction of chloroauric acid with sodium borohydride. Various characterization techniques such as transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-visible) and Fourier transform infrared spectroscopy (FTIR) were used for the characterization of Au-P(STY@NIPM). The catalytic potential of Au-P(STY@NIPM) toward the reductive reaction of 4-nitrophenol (4NP) under various reaction conditions was evaluated. The Arrhenius and Eyring parameters for the catalytic reduction of 4NP were determined to explore the process of catalysis. A variety of nitroarenes were converted successfully into their corresponding aminoarenes with good to excellent yields in the presence of the Au-P(STY@NIPM) system using NaBH4 as a reductant. The Au-P(STY@NIPM) system was found to be an efficient and recyclable catalyst with no significant loss in its catalytic efficiency.

11.
Int J Biol Macromol ; 194: 117-127, 2022 Jan 01.
Article En | MEDLINE | ID: mdl-34861277

In this study, organo-funtionalization of sodium-alginate has been carried out using phenylsemicarbazide as modifier to graft N, O-donor atoms containing functional groups (amino-carbamate moieties) to offer novel support for TiO2 immobilization. Hybrid composite made of aminocarbamated alginate, carboxymethyl chitosan (CMC) and titanium oxide TiO2 (MCA-TiO2) was prepared for the promising adsorptive remediation of Ni(II). FT-IR, SEM-EDX were employed to characterize MCA-TiO2. The optimization of TiO2 to modified alginate mass ratio was carried out and hydrogel beads with TiO2/MCA mass ratio of 10.0% (2MCA-TiO2) revealed highest sorption efficiency. The produced sorbents were adapted in the form of hydrogel beads for operation. Organic functionalization based on aminocarbamate (OCONHNH2) moieties on linear chains of alginate embedded additional chelating functional sites which enhanced sorption and selectivity. Batch mode experiments were conducted for optimization of pH and sorbent dose. Equilibrium sorption, kinetic and thermodynamic studies were performed to pattern the nature of sorption. Kinetic data was found in close agreement with pseudo-second order rate expression (PSORE). Isothermal equilibrium sorption data was well fitted with Langmuir adsorption model. Maximum sorption capacity was evaluated as 229 mg/g at 298 K and pH = 6.0.


Alginates/chemistry , Chitosan/chemistry , Nanocomposites/chemistry , Nickel/chemistry , Titanium/chemistry , Adsorption , Hydrogen-Ion Concentration , Kinetics , Molecular Structure , Nanocomposites/ultrastructure , Spectroscopy, Fourier Transform Infrared
12.
J Hazard Mater ; 402: 123535, 2021 01 15.
Article En | MEDLINE | ID: mdl-33254738

Hexavalent Chromium [Cr(VI)] is a highly carcinogenic and toxic material. It is one of the major environmental contaminants in aquatic system. Its removal from aqueous medium is a subject of current research. Various technologies like adsorption, membrane filtration, solvent extraction, coagulation, biological treatment, ion exchange and chemical reduction for removal of Cr(VI) from waste water have been developed. But chemical reduction of Cr(VI) to Cr(III) has attracted a lot of interest in the past few years because, the reduction product [Cr(III)] is one of the essential nutrients for organisms. Various nanoparticles based systems have been designed for conversion of Cr(VI) into Cr(III) which have not been critically reviewed in literature. This review present recent research progress of classification, designing and characterization of various inorganic nanoparticles reported as catalysts/reductants for rapid conversion of Cr(VI) into Cr(III) in aqueous medium. Kinetics and mechanism of nanoparticles enhanced/catalyzed reduction of Cr(VI) and factors affecting the reduction process have been discussed critically. Personal future insights have been also predicted for further development in this area.

13.
Ecotoxicol Environ Saf ; 202: 110924, 2020 Oct 01.
Article En | MEDLINE | ID: mdl-32800211

Fabrication of poly-(N-isopropylmethacrylamide-co-methacrylic acid) [p(NMA)] microgels to be utilized as microreactors to synthesize stable Ag nanoparticles for catalytic reductive degradation of dyes has been addressed in this work. Both p(NMA) microgel and Ag-p(NMA) hybrid microgel systems have been analyzed by Fourier transform infra-red and Dynamic light scattering, Ultraviolet-Visible spectroscopy, X-ray diffraction and Transmission electron microscopy. Catalytic activity of Ag-p(NMA) towards reductive degradation of Congo Red (CR), Methyl Orange (MO) and Alizarin Yellow (AY) was investigated under different operating conditions. Spectrophotometry was employed to check the progress of reaction while the rate constant (kapp) value of degradation reaction was determined under various conditions to optimize reaction parameters for rapid and economical degradation of these dyes. An increase in kapp value was observed by increasing feed content of dye up to a certain value that decreases again by further increment in dye concentration which reflects that catalysis follows Langmuir-Hinshelwood mechanism. A gradual increase in the kapp value was also observed with increasing quantity of hybrid microgel used as a catalyst. By comparing kapp values of degradation of aforementioned dyes, it was found that Ag-p(NMA) hybrid microgel gives better activity for MO dye degradation in comparison to catalytic degradation of CR and AY.


Azo Compounds/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Catalysis , Coloring Agents/chemistry , Congo Red/chemistry , Hydrogels/chemistry , Microscopy, Electron, Transmission , Polymers/chemistry , Spectrophotometry , X-Ray Diffraction
14.
Environ Sci Pollut Res Int ; 27(22): 28169-28182, 2020 Aug.
Article En | MEDLINE | ID: mdl-32415448

Extraction of toxic heavy metal ions from aqueous medium using poly(N-isopropylmethacrylamide-acrylic acid) (P(NiPmA-Ac)) microgels as adsorbent has been investigated in present study. P(NiPmA-Ac) microgel particles were prepared by free radical precipitation polymerization in aqueous medium. Morphology and size of the prepared microgel particles was investigated by transmission electron microscopy (TEM). The Fourier transform infrared (FT-IR) analysis of pure and metal ion-loaded microgel particles was performed to confirm the presence of various functionalities of microgel particles and their interaction with metal ions extracted from aqueous medium. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to investigate the thermal stability and thermal behavior of pure and metal ion-loaded microgel particles. Contents of metal ions loaded into microgel particles were determined by TGA analysis. It was observed that P(NiPmA-Ac) particles have a potential to extract Cu2+ and Co2+ ions from aqueous medium. The Freundlich adsorption isotherm model best interprets the adsorption process as compared with the Langmuir model. Value of R2 according to the Freundlich adsorption isotherm was found to be 0.994 and 0.993 for Cu2+ and Co2+ ions, respectively. Adsorption process was followed by pseudo second order kinetics for Cu2+ and Co2+ ions with R2 values of 0.999 for both metal ions. Thermodynamic study showed that adsorption process was spontaneous, feasible, and endothermic in nature. Entropy was decreased at adsorbate-adsorbent interface during adsorption process. Adsorbent was recycled and reused for removal of Cu2+ ions, and adsorption efficiency was found to be maintained up to three cycles. Microgel particles also have ability to extract Cu2+ ions efficiently from electroplating wastewater. Graphical abstract.


Copper , Water Pollutants, Chemical/analysis , Acrylates , Adsorption , Cobalt , Hydrogen-Ion Concentration , Kinetics , Microgels , Spectroscopy, Fourier Transform Infrared , Stimuli Responsive Polymers , Thermodynamics
15.
Crit Rev Anal Chem ; 50(6): 513-537, 2020.
Article En | MEDLINE | ID: mdl-31559830

Polymer microgels loaded with inorganic nanoparticles have gained much attention as catalytic systems for reduction of toxic chemicals. Enhanced catalytic properties of hybrid microgels are related to the stimuli responsive nature of microgels and extraordinary stability of nanoparticles within network of polymer microgels. Catalytic properties of hybrid microgels can be tuned very easily by slight variation in environmental conditions. Herein we have reviewed catalytic reduction of toxic chemicals such as nitroarenes and organic dyes in the presence of appropriate hybrid microgel catalytic systems under different operating conditions of reaction. Recent advancements in catalytic behavior of hybrid microgels with special emphasis on their ability to catalytically degrade various toxic chemicals has been presented in this review.


Coloring Agents/chemistry , Coloring Agents/isolation & purification , Microgels/chemistry , Nitro Compounds/chemistry , Nitro Compounds/isolation & purification , Photochemical Processes , Water/chemistry , Catalysis
16.
RSC Adv ; 11(2): 978-995, 2020 Dec 24.
Article En | MEDLINE | ID: mdl-35423699

The vinyl caprolactam (VCL) based microgel system has become the center of great attention due to its versatile properties. Copolymerization of VCL with an ionic monomer imparts pH responsive properties into the microgel system in addition to thermo-sensitivity. Stimuli responsive behavior of VCL-based microgels makes them prospective and appealing candidates for practical applications covering the fields of drug delivery, catalysis and optical devices. In the last few years, VCL-based microgels have been used as microreactors and stabilizers for the synthesis and stabilization of inorganic nanoparticles to obtain hybrid microgels. The present review article provides a summary of the present-day progress of fabrication, stabilization, categorization and analysis of VCL-based microgels and their hybrids with different morphologies. The stimuli responsive properties and applications of VCL-based hybrid microgels have been reviewed critically. The remaining problems which need to be addressed have been pointed out for further advancement in this field.

17.
J Hazard Mater ; 377: 399-408, 2019 09 05.
Article En | MEDLINE | ID: mdl-31176075

Poly(N-isopropylacrylamide-co-acrylamide) (PNA-BIS-2) microgels were synthesized by free radical precipitation polymerization in aqueous medium. Spherical Ag nanoparticles with diameter of 10-20 nm were fabricated inside the PNA-BIS-2 microgels by in-situ reduction of silver nitrate using sodium borohydride as reducing agent. The Ag nanoparticles- loaded hybrid microgels were characterized by Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Energy dispersive X-ray (EDX), Scanning transmission electron microscopy (STEM), Ultraviolet visible spectroscopy (UV Visible), Thermogravimetric analysis (TGA) and X-ray diffraction (XRD). Ag contents in the hybrid system were determined by inductively coupled plasma - optical emission spectrometry (ICP-OES). Various nitroarenes were successfully converted into their respective aromatic amines with good to excellent yields (ranging from 75% to 97%) under mild reaction conditions. The catalyst has ability to successfully convert substituted nitroarenes into desired products keeping many functionalities intact. The catalyst can be stored for long time without any sign of aggregation and can be used multiple times without any significant loss in its catalytic activity.

18.
RSC Adv ; 9(24): 13838-13854, 2019 Apr 30.
Article En | MEDLINE | ID: mdl-35519604

Acrylamide based microgels have gained a lot of attention in the last three decades due to their potential applications in various fields based on their responsive behavior and chemical stability. In this article, the synthesis, properties, and applications of poly(N-isopropylacrylamide-co-acrylamide) [P(NIPAM-Am)] microgels and P(NIPAM-Am) microgels having an additional ionic moiety in their network [P(NIPAM-Am-IM)] are reviewed. These microgels may swell/deswell reversibly with slight changes in environmental conditions such as change in temperature/pH/ionic strength etc. of the medium. This responsive behavior makes the microgels a potential candidate for use in the field of nanotechnology, drug delivery, sensing and catalysis. A critical overview of the recent research progress in this area along with future perspectives is presented. The discussion is concluded with suggested possible future studies for further development in this area.

19.
Environ Technol ; 40(15): 2027-2036, 2019 Jun.
Article En | MEDLINE | ID: mdl-29384040

In this study, poly(N-isopropylmethacrylamide-co-methacrylic acid) microgels prepared by free radical precipitation polymerization were used as micro-reactors for the synthesis and stabilization of silver nanoparticles. UV-Visible spectroscopy, Transmission Electron Microscopy and Fourier-transform infrared spectroscopy were used to characterize both pure and hybrid microgels. The catalytic reduction of 4-nitroaniline was carried out in the presence of hybrid microgels to test their catalytic activity, and the catalysis mechanism was explored by varying the concentrations of reacting species like 4-nitroaniline and NaBH4, as well as the dose of the catalyst. The kinetic data indicates that this reaction follows pseudo-first order. The variation in apparent rate constant (kapp) with respect to NaBH4 concentration also discloses it to be the following Langmuir-Hinshelwood mechanism. The relationship between catalyst concentration and apparent rate constant was found to be increasing in a linear manner. The data obtained also confirmed that silver nanoparticles loaded microgels have the potential to be used as an excellent micro-reactor for selective reduction of 4-nitroaniline to p-phenylenediamine.


Metal Nanoparticles , Silver , Aniline Compounds , Catalysis
20.
J Environ Sci (China) ; 72: 43-52, 2018 Oct.
Article En | MEDLINE | ID: mdl-30244750

Silver nanoparticles with average diameter of 10±3nm were synthesized within the sieves of poly(N-isopropylacrylamide-2-hydroxyethylmethacrylate-acrylic acid) (p(NIPAAm-HEMA-AAc)) polymer microgels. Free radial emulsion polymerization was employed for synthesis of p(NIPAAm-HEMA-AAc) polymer microgels. Silver nanoparticles were introduced within the microgels sphere by in situ reduction method. Microgels and hybrid microgels were characterized by Fourier transform infrared spectroscopy, ultra violet-visible spectroscopy, transmission electron microscopy and dynamic light scattering measurements. Catalytic activity of Ag-p(NIPAAm-HEMA-AAc) hybrid microgels was studied using catalytic reduction of 4-nitrophenol (4-NP) as a model reaction in aqueous media. The influence of sodium borohydride (NaBH4) concentration, catalyst dose and 4-NP concentration on catalytic reduction of 4-NP was investigated. A linear relationship was found between catalyst dose and apparent rate constant (kapp). The mechanism of catalysis by hybrid microgels was explored for further development in this area. The deep analysis of catalytic process reveals that the unique combination of NIPAAm, HEMA and AAc does not only stabilize silver nanoparticles in polymer network but it also enhances the mass transport of hydrophilic substrate like 4-NP from outside to inside the polymer network.


Metal Nanoparticles/chemistry , Models, Chemical , Nitrophenols/chemistry , Silver/chemistry
...